
 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
  17-12-2008 

2. REPORT TYPE 
Final Report 

3. DATES COVERED (From - To) 
 01-11-2008 – 31-12-2008 

4. TITLE AND SUBTITLE 
“Influence of thermal noise on the performance of nano-sized spin-torque microwave 
oscillators for military and space applications” 

 

5a. CONTRACT NUMBER 
 
W56HZV-08-P-L605 

 

 

5b. GRANT NUMBER 

N/A 

 

 

5c. PROGRAM ELEMENT NUMBER 

N/A 

6. AUTHOR(S) 
Andrei N. Slavin 
 

5d. PROJECT NUMBER 

N/A 

 

 

5e. TASK NUMBER 

N/A 

 

 

5f. WORK UNIT NUMBER 

2 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 

Oakland University 

 

 

 

 

 

2200 N. Squirrel Road, Rochester, Michigan 
48309-4401 
 

 

 

 

 

 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
U.S. ARMY TACOM-LCMC 6501 E. 11 MILE ROAD, WARREN MI 48397-5000 N/A 

   

  11. SPONSOR/MONITOR’S REPORT  

        NUMBER(S) 

  N/A 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

 

Approved for public release; distribution is unlimited 
 

 

 
13. SUPPLEMENTARY NOTES 
  COR : Elena Bankowski 

14. ABSTRACT 
 
The work is devoted to  theoretical research leading to the fundamental understanding of the influence of thermal noise on the performance of 
nano-sized spin-torque microwave oscillators for military and space applications. In contrast with the existing theories, the developed theory is not 
be based on the assumption that the noise power is much smaller than the power generated by the oscillator. The theory takes into account strong 
nonlinearity of nano-scale spin-torque magnetic devices, i.e. dependence of device parameters (frequency, damping rate, etc.) on the amplitude of 
the generated microwave oscillations.  
 
The developed theory lays foundation for the practical development of tunable nano-sized spin torque microwave oscillators.  
Such devices may be desirable in the future nano-electronic circuits designed for military and space-oriented applications.  
These devices could replace current semiconductor microwave generators, eliminating the sensitivity of such  generators  to ionizing radiation. 
 
This research does not include the areas of intentional interference (jamming/RF weapons), noise in space environment 
(radiation hardening), or other countermeasure related issues. 

15. SUBJECT TERMS 

 

Spin-torque microwave oscillators, microwave generation, linewidth, lineshape 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 Andrei Slavin 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

 

none 

 

12 

19b. TELEPHONE NUMBER (include area 
code) 
(248) 370 -3401 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 

 



FINAL REPORT 

 

on the  ILIR project :   “Influence of thermal noise on the performance of nano-sized spin-torque microwave  oscillators 

for military and space applications”  

 

Supported by the contract # W56HZV-08-P-L605   from the TACOM-Warren, AMSTA-AQ-ASRB 

Name of  Contractor:  Oakland  University (OU), Department of Physics,  PI :  Professor A.N. Slavin 

 

Scope and objectives of the effort 

 

         The contractor is required to perform theoretical research leading to the fundamental understanding of the influence of 

thermal noise on the performance of nano-sized spin-torque microwave oscillators for military and space applications. In contrast 

with the existing theories, the developed theory should not be based on the assumption that the noise power is much smaller than 

the power generated by the oscillator. The theory should, also, take into account strong nonlinearity of nano-scale spin-torque 

magnetic devices, i.e. dependence of device parameters (frequency, damping rate, etc.) on the amplitude of the generated 

microwave oscillations.  

      If the research results are favorable, future effort toward actual application may lead to tunable nano-sized spin torque 

microwave oscillators. Such devices may be desirable in the future nano-electronic circuits designed for military and space-

oriented applications. These devices could replace current semiconductor microwave transistors, eliminating the sensitivity of 

such semiconductors to ionizing radiation. 

      This research will not include the areas of intentional interference (jamming/RF weapons), noise in space environment 

(radiation hardening), or other countermeasure related issues.  

 

 

Work Period 2   :   11/01/08- 12/31/08: 

  

 
Theoretical study of the stochastic magnetization dynamics excited by spin-polarized current in magnetic nano-structures: 

calculation of the average values of generated power, generation frequency, and the generation linewidth of a nonlinear spin-

torque oscillator. Analysis of the lineshape distortions near the auto-oscillation threshold. Comparison of the obtained 

theoretical results to the results of laboratory experiments.  

 

The report covering the above described research topics and entitled: “Stochastic magnetization dynamics excited by spin-

polarized current in magnetic nano-structures”   is attached. 

 

 

 

Principal Investigator from Oakland University 

of the contract  # W56HZV-08-P-L605    

Professor  and  Chair,   PhD 

 

 

                                                             Tel. (248) 370-3401 

Andrei N. Slavin                                                                                 E-Mail: slavin@oakland.edu  

 

 

 

 

 

 



1

Stochastic magnetization dynamics excited by
spin-polarized current in magnetic nano-structures

I. INTRODUCTION

Thermal fluctuations and other noise sources play an im-
portant role in the dynamics of conventional auto-oscillators.
Thermal fluctuations (or noise) determine one of the most
important, from the practical point of view, parameters of the
auto-oscillator – generation linewidth ∆ω. The influence of
thermal noise is even more important for the nano-scale spin-
torque oscillators. Due to the extremely small sizes of STO,
the characteristic operational energy of these oscillators can
be comparable with the thermal energy kBT (where kB is the
Boltzmann constant and T is the thermodynamic temperature).
As a result, not only the generation linewidth, but all the other
characteristics of spin-torque oscillators can be dependent on
the temperature. In particular, thermal fluctuations lead to the
blurring of the generation threshold in STO and to a finite
level of power fluctuations in the above-threshold operational
regime, in which the influence of thermal fluctuations is,
usually, negligible for conventional macro-sized oscillators.

In this section we describe how the influence of noise can
be accounted for in the nonlinear oscillator model (Sec. II)
and consider several important noise-related issues, namely,
the influence of noise on the generation power of an oscillator
(Sec. III) and the broadening of the oscillator linewidth under
the action of thermal fluctuations (Sec. IV).

II. STOCHASTIC NONLINEAR OSCILLATOR MODEL

The stochastic dynamics of an auto-oscillator can be de-
scribed in the framework of the nonlinear oscillator model (I.5)
with external force fn(t) representing the action of thermal
fluctuations:

dc

dt
+ iω(|c|2)c+ Γ+(|c|2)c− Γ−(|c|2)c = fn(t) . (1)

For any particular oscillator scheme (1) can be derived from
the stochastic ”material” equations. For instance, to obtain
(1) for the Van der Pol oscillator (see Sec. I.IV-A) one
has to add to the electrical scheme shown in Fig. I.2a an
additional stochastic voltage source that describes thermal
Johnson-Nyquist noise connected with the resistor R. For a
spin-torque oscillator stochastic equation (1) can be derived
from the Landau-Lifshits-Gilbert-Slonczewski equation (I.1)
with an additional random thermal magnetic field.

For an auto-oscillator of an arbitrary nature, stochastic force
fn(t) in (1) can be considered as a phenomenological term
describing action of thermal fluctuations. In such a case,
the statistical properties of fn(t) should be determined from
the condition of a proper thermodynamical behavior of the
oscillator in the state of thermal equilibrium (i.e., when the
negative damping is vanishing Γ−(|c|2) = 0). This is achieved

by selecting fn(t) to be a white Gaussian noise with the zero
mean and second-order correlator given by [1]

〈fn(t)fn(t′)〉 = 0 , 〈fn(t)f∗n (t′)〉 = 2Dnδ(t− t′) . (2)

Here Dn is the effective ”diffusion coefficient” that character-
izes the noise amplitude. To describe correctly the stochastic
dynamics of a nonlinear oscillator with arbitrary dependences
of the frequency ω(p) and natural damping Γ+(p) on the
oscillation power p, one has to assume that the diffusion
coefficient Dn also depends on p as [1]

Dn(p) = Γ+(p)η(p) = Γ+(p)
kBT

λω(p)
(3)

where η(p) = kBT/λω(p) is the effective noise power in the
nonlinear regime. As it will be shown below, this form of the
diffusion coefficient provides correct equilibrium properties
(see (7)) for the arbitrary power dependences ω(p) and Γ+(p).

In (3) factor λ is a scale factor that relates the oscillator
energy E(p) to the dimensionless oscillator power p = |c|2:

E(p) = λ

∫ p

0

ω(p′)dp′ . (4)

Clearly, λ depends on the normalization of the oscillator
amplitude c. For our choice of normalization of the amplitude
c of the spin-torque oscillator (see (I.15)) λ has the form

λ = VeffM0/γ

where Veff is the effective volume of the magnetic material
of the ”free” layer involved in the auto-oscillation, M0 is
the saturation magnetization of the ”free” layer, and γ is the
gyromagnetic ratio.

For many problems, instead of solving the nonlinear
stochastic Langevin equation (1) for the complex oscillation
amplitude c(t), it is convenient to consider the dynamics of
the probability density function (PDF) P(t, p, φ) that gives
the probability of the auto-oscillator to have the power p and
phase φ at the time t (given some probability distribution at the
initial moment of time). While the dynamics of the complex
amplitude c(t) is described by the stochastic and nonlinear
equation (1), the evolution of the PDF P is governed by the
deterministic and linear Fokker-Planck equation that can be
obtained from (1) using a standard formalism [2]

∂P
∂t
− ∂

∂p
[2p (Γ+ − Γ−)P]− ω∂P

∂φ

=
∂

∂p

(
2pDn

∂P
∂p

)
+

∂

∂φ

(
Dn

2p
∂P
∂φ

)
. (5)

Terms in the left-hand-side part of (5) originate from the
deterministic terms in (1), whereas the terms in the right-hand-
side part of (5) describe the stochastic action of the thermal
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noise fn(t). One can see, that the noise-related terms in (5)
have the form of a usual diffusion operator (in the power-phase
coordinates) with the power-dependent diffusion coefficient
Dn. Thus, thermal noise leads to the diffusion of the oscillator
in the phase space.

Equation (1) or (5) can be applied for the analysis of a
number of noise-related problems of oscillator dynamics. It
is clear, that one can easily add to this stochastic scheme
additional action of deterministic external signals [3] or mutual
coupling between oscillators. It is, also, possible to generalize
(1) to include effects of other sources of noise, e.g., in the
case of spin-torque oscillators, flicker noise related to the
bias current or mag-noise related to the fluctuations in the
orientation of the ”fixed” layer magnetization.

III. POWER GENERATED BY AN OSCILLATOR IN THE
PRESENCE OF NOISE

In this section we consider the problem of determination of
the power, generated by an auto-oscillator in the presence of
thermal fluctuations. In the framework of the nonlinear auto-
oscillator model one can find a complete analytical solution
of this problem, valid both below the generation threshold
(when, like in a passive oscillator, the oscillations exist only
due to the thermal noise) and in the above-threshold generation
regime (when the thermal noise leads to the fluctuations of
the generated power). The obtained general results, applied
to the case of an STO, suggest a precise method for the
determination of the threshold current Ith and quantitatively
describe experimental data in the near-threshold region, when
the influence of the thermal fluctuations can not be ignored.

A. Theoretical Results

To find the average power, generated by an oscillator in the
presence of thermal noise, it is sufficient to find the stationary
solution P0 of the Fokker-Planck equation (5). It should be
noted, that, since (5) does not depend on the oscillator phase
φ explicitly (which is connected with the phase-invariance of
the Langevin equation (1) or, in more general terms, with an
autonomous character of the auto-oscillator’s dynamics), the
stationary PDF P0 is independent of the phase φ. Thus, in
the stationary state any value of the oscillator phase has equal
probability, and stationary PDF P0 is a function of only the
oscillator power p: P0 = P0(p). In this case (5) becomes an
ordinary second-order differential equation

d

dp

[
2p (Γ+ − Γ−)P0 + 2pDn

dP0

dp

]
= 0

and a physically-consistent solution of this equation has the
form [1]

P0(p) = N0 exp
[
− λ

kBT

∫ p

0

ω(p′)
(

1− Γ−(p′)
Γ+(p′)

)
dp′
]
.

(6)
Here N0 is the normalization constant determined from the
normalization condition∫ ∞

0

P0(p)dp = 1 .

One can see from (6), that at the thermal equilibrium
(Γ−(p) = 0) stationary PDF P0(p) takes the form

Peq(p) = N0 exp
[
− λ

kBT

∫ p

0

ω(p′)dp′
]

= N0 exp
[
−E(p)
kBT

]
(7)

which coincides with the standard Boltzmann distribution. We
would like to stress, that our approach gives a correct equi-
librium distribution (7) and, hence, satisfies the fluctuation-
dissipation theorem [4] for an arbitrary dependence of the
oscillator’s frequency ω(p) and damping Γ+(p) on the power
p, even if these functions significantly change on the thermal
energy scale kBT .

Equation (6) allows one to determine any stationary charac-
teristic of a nonlinear auto-oscillator in the presence of noise.
For instance, the mean oscillation power p is found to be

p =
∫ ∞

0

pP0(p)dp .

The power fluctuations ∆p2 can be calculated as

∆p2 = p2 − (p)2

where
p2 =

∫ ∞
0

p2 P0(p)dp .

When the temperature T is small, the argument of the
exponential function in (6) is large and (6) can be simplified
in two important cases. First, in the below-threshold regime
(when Γ−(p) < Γ+(p) for all p) the distribution P0(p) has a
maximum at p = 0. Expanding the integrand in (6) in a Taylor
series near p = 0 and keeping only the first non-zero term,
one obtains an approximate expression for the PDF P0(p) in
the below-threshold regime:

P<(p) ≈ 1− ζ
η(0)

exp
[
−1− ζ
η(0)

p

]
where the supercriticality is defined as ζ = Γ−(0)/Γ+(0),
which coincides with the previously used notation (I.26) for
the case of a spin-torque oscillator. The average power p and
power fluctuations ∆p2 in this regime are given approximately
by the expressions:

p =
η(0)
1− ζ

=
(
kBT

λω(0)

)
Γ+(0)

Γ+(0)− Γ−(0)
(8a)

∆p2 = (p)2 =
(
η(0)
1− ζ

)2

. (8b)

The below-threshold PDF P<(p) has approximately the
same Boltzmann-like form P<(p) ∼ exp(−p/p) as the equi-
librium distribution Peq(p) (note, that for small temperature T
one can approximate E(p)/kBT as λω(0)p/kBT = p/η(0) in
(7)), but with the increased average power level p. One may
interpret this effect as an effective increase of the temperature
T → T/(1 − ζ) (see, e.g., [5], [6]). We would like to note,
however, that this interpretation is not completely correct, as
the negative damping Γ−(p) in this regime does not only
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increase the power p, but, also, reduces the linewidth of
oscillations (see Sec. IV), which can not be described by any
changes of the effective temperature.

In the above-threshold generation regime stationary PDF
P0(p) has a maximum at the stationary power p = p0 (see
(I.25)), for which Γ+(p0) = Γ−(p0), and the integrand in (6)
is zero. By expanding the integrand in (6) in a Taylor series
near p = p0, one can derive an approximate expression for the
PDF P0(p) in the above-threshold regime

P>(p) ≈ 1√
2π∆p

exp
[
− (p− p0)2

2∆p2

]
.

Here

∆p2 =
(

Γ+(p0)
Γp

)
p0η(p0) ≈

(
Γ+(p0)

Γp

)
kBT

E(p0)
p2

0 (9)

is the level of power fluctuations of the oscillator in the
above-threshold regime (Γp is defined by (I.28b)). The mean
oscillation power p in this regime is approximately equal to
the zero-temperature value p0 (I.25).

One can see, that the probability distribution function P>(p)
in the above-threshold regime has a functional form that is sub-
stantially different from the form of the below-threshold PDF
P<(p). It is also interesting to note, that the power fluctuations
in this regime increase with temperature as ∆p ∼

√
T , while

below the generation threshold ∆p ∼ T . Since for typical
auto-oscillators Γp ∼ Γ+(p0), the relative level of power
fluctuations ∆p/p0 ∼

√
η(p0)/p0 decreases with p0 (i.e., with

the increase of the supercriticality) and, for sufficiently large
p0, power fluctuations become negligible.

Neglecting the dependence of the oscillator frequency ω(p)
on the power p (η(p) = η = const), which has only a
minor influence on the form of the PDF, and using (I.20),
one can derive from (6) an explicit general expression for
the stationary probability distribution function of a spin-torque
oscillator valid in the whole range of bias currents:

P0(p) =

√
2ζ
πη

exp
[
−(1− ζ + ζp)2/2ζη

]
1 + erf

[
(ζ − 1)/

√
2ζη
] (10a)

for Q = 0 and

P0(p) =
Q exp

[
−(ζ +Q)(1 +Qp)/Q2η

]
(1 +Qp)βEβ((ζ +Q)/Q2η)

(10b)

for Q 6= 0. Here β = −(1 + Q)ζ/Q2η, erf(x) =
(2/
√
π)
∫ x

0
e−t

2
dt is the error function, and En(x) =∫∞

1
e−xt/tndt is the exponential integral function. Fig. 1

shows the profile of the probability distribution function (10)
in the below-threshold (ζ = 0), threshold (ζ = 1), and above-
threshold (ζ = 2) regimes.

Using the analytical expression (10) for the probability
distribution function, it is possible to obtain an analytical
expression for the mean oscillation power p of a spin-torque
oscillator:

p =
√

2η
πζ

exp
[
−(ζ − 1)2/2ζη

]
1 + erf

[
(ζ − 1)/

√
2ζη
] +

ζ − 1
ζ

(11a)
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Fig. 1. Stationary probability distribution function P0(p) (10) for several
values of the supercriticality parameter ζ (from [1]). Nonlinear damping
coefficient Q = 0.3, noise level η = 0.05. Data for ζ = 0 (thermal
equilibrium) have been divided by 2.
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Fig. 2. Dependence of the mean oscillator power p (11) on the supercriticality
ζ for several noise levels η (from [1]). Nonlinear damping coefficient Q =
0.3. The lower curve for η = 0 coincides with the deterministic value (I.25)
of the oscillator power p0.

for Q = 0 and

p =
Qη

Q+ ζ

[
1 +

exp(−(ζ +Q)/Q2η)
Eβ((ζ +Q)/Q2η)

]
+
ζ − 1
ζ +Q

(11b)

for Q 6= 0. Fig. 2 shows the dependence (11) of the mean
power p on the supercriticality ζ for several values of the
noise power η.

B. Comparison With Experiments

To illustrate the application of the above described theory to
a real experimental situation we compare below the theoretical
expressions for the auto-oscillator power in the presence of
noise with the recent measurements of the generated power in
a GMR spin-valve auto-oscillator based on a metallic nano-
pillar [7]. The experimental data from [7] are shown by black
dots in the main frame of Fig. 3. To analyze these experimental
data it is important, first of all, to determine the threshold of
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Fig. 3. Main panel: Dependence of the mean power p on the bias current
I . Dots – experiment [7] for T = 225 K, solid line – theoretical dependence
(11) for Ith = 4.9 mA, η = 4.2 ·10−4, Q = 0.3 (from [1]). Inset shows the
same data for inverse power 1/p in near-threshold range of currents. Dashed
line corresponds to the approximate expression (12) valid for small currents.
Intersection of this line with x axis gives the value of the threshold current
Ith.

microwave generation, i.e. the magnitude of the bias current at
which the spin-torque oscillator, instead of passively filtering
its eigen-frequency from the thermal noise, starts to actively
self-generate. We believe that this can be done by analyzing
the experimental data for very small values of the bias current.
In the inset of Fig. 3 we show by dots the experimental
dependence of the inverse mean power 1/p on the bias current
I . These dots can be fitted to the theoretical expression (8a)
which gives a linear dependence of the inverse power on the
bias current for small values of current

1
p
∝ (Ith − I) . (12)

This linear dependence, taking place in the below-threshold
regime I < Ith and shown by a dashed line in the inset of
Fig. 3, crosses the horizontal axis (axis of the bias current) at
the point I = Ith and, therefore, allows one to determine the
Ith with a reasonably high precision.

Thus, the precise measurement of the oscillator output
power as a function of the bias current for low values of current
in combination with the theoretical formula (8a) provides a
simple method for the precise determination of the threshold
current Ith of microwave generation in a spin-torque oscillator
in situations when the influence of thermal fluctuations is
strong, and the determination of Ith by other means is difficult.
In particular, from the inset of Fig. 3 one can immediately
determine the value of the threshold current of Ith = 4.9 mA,
which is substantially larger than the current I∗ ≈ 4.2 mA, at
which the thermally-induced oscillations become observable
in the experiment [7].

Using thus determined value of the threshold current Ith =
4.9 mA to calculate the supercriticality parameter ζ = I/Ith
in the theoretical expression (11), it is possible to describe
theoretically the power p, generated by an STO, in a wide
range of bias currents (see main panel in Fig. 3). We would
like to stress, that the correct determination of the threshold
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Fig. 4. Main panel: Dependence of the inverse power 1/p on the bias
current I . Dots – experiment [8] for a magnetic tunnel junction (the direction
of the bias current was changed to coincide with our sign agreement), solid
lines – theoretical dependences (12) demonstrating different values of the
threshold current, determined from the data for positive (Ith, pos) and negative
(Ith, neg) current directions. Inset shows the same set of data for the direct
power p.

current Ith (and, therefore, the parameter ζ) is essential for the
comparison of (11) with experiment, since the dependence of
the oscillator power p on the other parameters of the model
(like noise power η and nonlinear damping parameter Q) in
the above-threshold region (ζ > 1) is relatively weak.

Fig. 4 demonstrates another example of the threshold current
determination using the linear dependence (12) in the below-
threshold region. In this case the above described method of
the threshold current determination is applied to a spin-torque
device based on a magnetic tunnel junction (MTJ). Dots in
the main panel of Fig. 4 show the experimental data for the
inverse power 1/p measured in the below-threshold regime in
an MTJ nano-pillar (see [8]), in which the spacer between the
”free” and ”fixed” magnetic layers (see Fig. I.1b) was made
of a non-magnetic insulator Al2O3. Due to a much larger
resistance of the MTJ nano-pillar (compared to fully-metallic
GMR spin valve nano-pillars, where the spacer is made of a
non-magnetic metal), the authors of [8] were able to measure
the power of the thermally-induced oscillations of the device
even for the negative values of the bias currents I < 0, when
the spin-transfer torque creates effective positive damping and,
according to (12), reduces the measured oscillation power p.

One can see from Fig. 4 that the experimental dependences
of the inverse output power on the bias current for positive
I > 0 and negative I < 0 current directions are both linear
(12), but have substantially different slopes. Respectively,
values of the threshold current Ith, estimated using (12)
from the experimental data for positive (Ith, pos = 9 mA)
and negative (Ith, neg = 2 mA) currents, are significantly
different. Note, that both Ith, pos and Ith, neg correspond to
the same magnetization configuration, but were calculated for
different current polarities. Since the threshold current (I.23) is
inversely proportional to the spin-polarization efficiency ε, this
difference in Ith suggests that the spin-polarization efficiency
ε for MTJ depends not only on the mutual orientation of the
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magnetizations of the ”free” and ”fixed” layers, but, also, on
the direction of the bias current. In the case shown in Fig. 4 the
ratio of spin-polarization efficiencies for positive and negative
currents is εpos/εneg = 2/9 ≈ 0.22.

Thus, the measurements of the current dependence of the
noise-induced output power in MTJ-based STO can provide
direct information about the spin-polarization efficiency, and
can be used for verification of theories of spin-dependent
tunneling in magnetic nano-structures.

We would like to mention, that the threshold current,
estimated in [8] using the measurements of the linewidth
and the data for the direct (rather than inverse) power p, is
Ith = 20 ± 5 mA, which is far above our estimates. We
attribute this difference to the fact that other sources of noise
can give a substantial contribution to the linewidth of a highly-
resistive MTJ-based device, and, therefore, the estimation of
the threshold current based on the linewidth data could be
unreliable. On the other hand, the dependence of the direct
power p on the bias current I (see inset in Fig. 4) is nonlinear,
and it is much more difficult to make an estimate of the
threshold current based on such a nonlinear dependence. Thus,
the difference in the slopes for currents of different polarity,
that is clearly seen in Fig. 4, which demonstrates the current
dependence of the inverse power, is hardly noticeable in the
inset of Fig. 4, where the current dependence of the direct
power is presented.

IV. GENERATION LINEWIDTH OF AN AUTO-OSCILLATOR

Thermal fluctuations do not only blur the stationary dis-
tribution P0(p) of the oscillation power, but, also, alter the
dynamical behavior of an auto-oscillator. In the presence of
noise the auto-oscillation amplitude c(t) is not anymore a
harmonic function of time c(t) ∼ e−iωgt, corresponding to
a simple monochromatic oscillation, but is, instead, a rather
complicated stochastic function, and its spectrum

cΩ =
∫ +∞

−∞
c(t)eiΩtdt

has, strictly speaking, non-zero spectral components, corre-
sponding to every frequency Ω.

The power spectrum of the auto-oscillation S(Ω), that can
be defined as

〈cΩc∗Ω′〉 = 2πδ(Ω− Ω′)S(Ω)

is a convenient quantity that gives a detailed description of
the auto-oscillation spectrum in the presence of noise. Here the
angular brackets 〈. . . 〉 stay for the averaging over the statistics
of thermal fluctuations. For a coherent monochromatic oscil-
lation with the frequency ωg the power spectrum in singular
S(Ω) ∼ δ(Ω−ωg). In the presence of noise S(Ω) has a finite
width (called sometimes generation linewidth) ∆ω, which
provides a simple way for a single-parameter characterization
of a noisy auto-oscillation spectrum. The generation linewidth
∆ω is one of the most important parameters of an auto-
oscillator, especially with regards to its practical applications.

Alternatively, the coherence of oscillations can be charac-
terized by an autocorrelation function

K(τ) = 〈c(t+ τ)c∗(t)〉 .

The descriptions of noisy oscillations by a power spectrum
S(Ω) or an autocorrelation function K(τ) are fully equiva-
lent, since these two functions are connected by the Fourier
transform

S(Ω) =
∫
K(τ)eiΩτdτ .

As it will be shown below, in many cases the power spec-
trum of an auto-oscillation can be approximately represented
in a simple Lorentzian form

S(Ω) ≈ 2∆ωp
(Ω− ω)2 + ∆ω2

(13a)

where p is the average oscillation power, and ω is the mean
oscillation frequency. Note, that in (13a) and in the following
text ∆ω is defined as half-linewidth at a half-power level. The
autocorrelation function, corresponding to (13a), has a simple
exponential form

K(τ) = p exp(−iωτ −∆ω|τ |) . (13b)

It is important to stress, that in many cases the experimental
data for the generation linewidth are fitted to the simple
Lorentzian function (13), even if the actual lineshape S(Ω)
(or autocorrelation function K(τ)) has more complicated form.
Thus, usually, the generation linewidth ∆ω is understood in a
sense of an experimentally determined quantity obtained as a
best fitting parameter in the Lorentzian expression (13).

In the next section we derive expressions for generation
linewidth ∆ω of an auto-oscillator is several important partic-
ular cases, using the stochastic Langevin equation (1).

A. Below-Threshold Regime

In the below-threshold regime (Γ−(p) < Γ+(p)), when
the characteristic oscillation power p ∼ η is small, one can
neglect all the nonlinearities in (1). In such a case equation
(1) becomes an equation describing a usual linear oscillator in
the presence of noise:

dc

dt
+ iω(0)c+ [Γ+(0)− Γ−(0)]c = fn(t) .

One can easily find a solution of this linear equation in the
form

c(t) =

t∫
−∞

fn(t′) exp{−[iω(0) + Γ+(0)− Γ−(0)](t− t′)}dt′

Using the statistical properties of the thermal fluctuations (2),
it is easy to show that the autocorrelation function K(τ) in
this linear case has a simple exponential form (13b) with the
average power p given by (8a), mean frequency defined by
ω = ω(0), and the full linewidth given by

2∆ω = 2Γ+(0)− 2Γ−(0) = 2Γ+(0)(1− ζ) . (14)

It is clear, that the power spectrum S(Ω) of the oscillation in
this linear case has exactly the Lorentzian shape (13a).

For a spin-torque oscillator the expressions for the positive
and negative damping are given by (I.20), and the linewidth
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2∆ω of such an oscillator decreases linearly with the bias
current I as

2∆ω = 2ΓG − 2σI = 2ΓG

(
1− I

Ith

)
. (15)

The measurements of the current dependence of the linewidth
∆ω in the below-threshold regime provide an alternative
method of the experimental determination of the threshold
current Ith for current-induced excitations. As it was discussed
above, this method may not be very accurate for highly-
resistive STO based on magnetic tunnel junctions (MTJ).

Recently, the linear dependence (15) of the linewidth ∆ω
on the bias current I has been observed both in fully metallic
GMR spin valves [9] and in MTJ based on the TMR effect
[8].

B. Above-Threshold Regime: ”Linear” Oscillator

Far above the generation threshold the power fluctuations
in an auto-oscillator are negligible compared to the mean
generated power. In this regime the complex amplitude c(t)
becomes a pure phase-modulated process c(t) ≈ √p0e

iφ(t).
Consequently, the generation linewidth ∆ω and the overall
shape of the auto-oscillation power spectrum S(Ω) is de-
termined only by the phase fluctuations. This property is
general for auto-oscillators of any nature, and is connected
with different types of stability of the oscillator dynamics with
respect to the power and phase fluctuations (see Sec. I.V-A2).

Thus, to find a generation linewidth of an auto-oscillator
in the above-threshold generation regime, it is sufficient to
determine the statistical properties of the auto-oscillator phase
φ(t). Here we will consider this problem for a ”linear” oscil-
lator, i.e. for an auto-oscillator with frequency independent
of the oscillation power ω(p) = ωg = ω0 = const. As
it was noted before, the majority of conventional oscillators
belong to this class, whereas spin-torque oscillators, in general,
are characterized by a strong dependence of the oscillation
frequency ω(p) on the power p (this case will be considered
in the following section).

Using (1), one can derive a stochastic equation for the phase
φ = arg(c) of an auto-oscillator

dφ

dt
+ ωg =

1
√
p

Im[f̃n(t)] (16)

where f̃n(t) = fn(t)e−iφ(t). Note, that the statistical properties
of the function f̃n(t) are the same as for the function fn(t), i.e.
f̃n(t) is a white Gaussian stochastic process with the second-
order correlator given by (2).

Far above the generation threshold one can substitute the
stationary power p0 for p in the right-hand-side part of (16),
thus reducing this equation to a closed-form equation for the
phase φ, which has the following solution for the phase as a
function of time:

φ(t) = φ(0)− ωgt+
1
√
p0

∫ t

0

Im[f̃n(t′)]dt′ ,

where it was assumed that the phase at the initial moment
of time t = 0 has fixed value φ(0). This solution describes
the ”Brownian motion” of the phase φ(t) under the action of

thermal fluctuations. It is clear, that φ(t) is a Gaussian process
with the mean value

〈φ(t)〉 = φ(0)− ωgt (17a)

and the variance

∆φ2(t) = 〈φ2(t)〉 − [〈φ(t)〉]2 =
Γ+(p0)η(p0)

p0
|t| . (17b)

The phase variance ∆φ2(t) increases linearly with the time
interval |t|, exactly as the square of a particle displacement
for a usual Brownian motion.

The autocorrelation function K(t), corresponding to the
Gaussian random phase φ(t), can be written as

K(t) = p0 〈exp{i[φ(t)− φ(0)]}〉
= p0e

i〈φ(t)−φ(0)〉 exp[−∆φ(t)2/2] .

For a ”linear” auto-oscillator (∆φ2(t) ∼ |t|, see (17b)) the
auto-correlation fuction K(t) has the Lorentzian form (13b)
with the average frequency ω = ωg and full linewidth

2∆ω0 =
∆φ2(t)
|t|

= Γ+(p0)
η(p0)
p0

.

The ratio of the noise power η(p0) to the stationary auto-
oscillation power p0 in the above derived linewidth expres-
sion can be rewritten as a ratio of corresponding ener-
gies kBT/E(p0), yielding a physically transparent expression
for the Lorentzian generation linewidth of a ”linear” auto-
oscillator:

2∆ω0 = Γ+(p0)
kBT

E(p0)
. (18)

To the best of our knowledge, the generation linewidth in a
general form (18) was first written in [10].

The damping rate Γ+(p0) in (18) determines the over-
all scale of the possible linewidth variations, and the ratio
kBT/E(p0) describes the linewidth reduction due to a smaller
influence of noise (having the constant energy kBT ) for above-
threshold oscillations, the energy E(p0) of which increases
with the oscillation power p0. Note, also, that if we formally
use (18) for the evaluation of the linewidth in the state of ther-
modynamic equilibrium (E(p0) → kBT , Γ+(p0) → Γ+(0)),
we obtain the linewidth value that is 2 times smaller than the
value given by (14) in the same limit (Γ−(0) → 0). This
difference is explained by the fact that only phase fluctuations
lead to the linewidth broadening of an auto-oscillator in the
above-threshold generation regime, whereas, for a passive
oscillator, both phase and amplitude fluctuations play the same
role.

The expressions for the generation linewidth of many dif-
ferent types of conventional (”linear”) auto-oscillators have
been derived previously (see, e.g., a classical book [11]). It is
important to note, that all these expressions can be rewritten
in the general form (18). In particular, the full generation
linewidth of an electrical auto-oscillator (similar to the one
considered in Sec. I.IV-A) is given by the classical formula
[11]:

2∆ω0 =
kBTRω

2
0

U2
0
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where R is the resistance of the circuit, ω0 = 1/
√
LC is the

resonance frequency of the electrical circuit having inductance
L and capacitance C, and U0 is the voltage amplitude of
self-sustained electrical oscillations on the capacitor C. This
expression can be exactly rewritten in the form (18), taking
into account that, for an electrical oscillator, the damping rate
is Γ+ = R/(2L), and the oscillation energy is E = CU2

0 /2.
The general expression (18) for the oscillator linewidth,

sometimes, can be used even for the description of quantum
systems. For example, the quantum limit for the linewidth
of a single-mode laser (Schawlow-Townes limit) leads to the
following expression [12], [13]

2∆ω0 =
h̄ω0

2
Γ2

0

Pout
.

Here ω0 is the generation frequency, Γ0 is the loss rate, which
is assumed to be caused only by the energy radiation out of
the laser cavity (losses in the active medium were neglected),
and Pout is the output power of the laser. This expression,
also, can be rewritten in the form (18), if one uses the energy
of quantum fluctuations h̄ω0/2 instead of the thermal noise
energy kBT , and takes into account, that the output power
Pout of the laser is connected with the oscillation energy E
by the expression Pout = Γ0E .

An attempt to calculate the generation linewidth of a spin-
torque oscillator has been undertaken in [14], and resulted
in an expression (see equation (28) in [14]), that, also, can
be rewritten in the form (18). However, the dependence of
the generated frequency of the generation power was ignored
in [14], and, therefore, the linewidth expression obtained in
[14] is correct only qualitatively. Thus, it is necessary to
consider the case of a substantially ”nonlinear” auto-oscillator
(i.e. an oscillator with a large nonlinear frequency shift) to
quantitatively describe the generation linewidth of an STO.

C. Above-Threshold Regime: ”Nonlinear” Oscillator

The expression for the auto-oscillator generation linewidth
(18), which was verified for many physical realizations of
auto-oscillators, underestimates the generation linewidth of an
STO by one–two orders of magnitude. The reason for such a
large difference is that in the derivation of (18) the oscillation
frequency was assumed to be independent of the oscillation
power ω(p) = const. For spin-torque oscillators, as it was
already emphasized, the influence of the nonlinear frequency
shift is very important. To find the correct expression for the
generation linewidth of an STO, as well as for any other
”nonlinear” oscillator, one has to explicitly take into account
the power dependence of the frequency ω(p) in the theory.

In the above-threshold generation regime the power fluc-
tuations δp(t) = p(t) − p0 are small even for a ”nonlinear”
oscillator δp(t)� p0. However, to obtain a correct result for
the generation linewidth one should not ignore them altogether,
but, instead, should use this smallness to linearize (1) near the
stationary generation power p = p0 to derive an approximate
system of equations for the power fluctuations δp(t) and the

phase φ(t) in a ”nonlinear” auto-oscillator:
dδp

dt
+ 2Γpδp = 2

√
p0 Re[f̃n(t)] (19a)

dφ

dt
+ ωg =

1
√
p0

Im[f̃n(t)]−Nδp (19b)

where, as in the previous subsection, f̃n(t) = fn(t)e−iφ(t) is a
stochastic process with the same properties as fn(t). The left-
hand side of (19a) is the same as (I.27) for power fluctuations
δp of free auto-oscillations.

One can see from (19b), that the frequency nonlinearity N
creates an addition noise term −Nδp in the the phase equation
(19b). The physical mechanism behind this additional noise is
clear: for a nonlinear auto-oscillator the power fluctuations
δp(t) lead to the frequency modulation ω(p(t)) = ω(p0 +
δp(t)) ≈ ωg +Nδp. In some sense this additional noise term
can be considered as an inhomogeneous broadening of the
oscillator linewidth: oscillators with different (due to thermal
fluctuations) powers p have different oscillation frequencies
ω(p).

Since the stochastic system (19) is a linear system of equa-
tions, and the noise f̃n(t) is a Gaussian process, both δp(t) and
φ(t) are the Gaussian processes also. One can easily obtain
a complete set of statistical characteristics of these processes.
Namely, the mean value of the power fluctuations following
from (19) is zero 〈δp(t)〉 = 0, whereas its correlation function
has the form

〈δp(t)δp(t′)〉 =
Γ+(p0)

Γp
η(p0)p0e

−2Γp|t−t′| . (20)

The mean value of the phase φ(t) (for a fixed value φ(0) of
the phase at the initial moment of time t = 0) is given by

〈φ(t)〉 = φ(0)− ωgt (21a)

and the variance of the phase fluctuations is expressed as

∆φ2(t) = 2∆ω0

[
(1 + ν2)|t| − ν2 1− e−2Γp|t|

2Γp

]
(21b)

where ν is the dimensionless nonlinear frequency shift coef-
ficient (I.34).

In contrast to the case of a ”linear” oscillator (17b), the
variance ∆φ2(t) (21b) has a nonlinear dependence on the time
interval |t|. This is caused by a finite correlation time (see
(20)) of the additional ”nonlinear” noise term −Nδp(t) in
(19b). Only for the time intervals |t|, that are much larger than
the correlation time 1/Γp of the power fluctuations, the phase
variance ∆φ2(t) starts to grow linearly with |t|. Consequently,
the spectrum of a ”nonlinear” auto-oscillator is, in general,
non-Lorentzian. There are, however, two limiting cases when
a rather complicated expression (21b) for the phase variance
of a nonlinear auto-oscillator can be substantially simplified.

If the temperature T and, consequently, the generation
linewidth ∆ω is sufficiently small ∆ω � Γp, one can neglect
the exponential factor in the second term of the right-hand-
side part of (21b) at the characteristic decoherence time scale
of |t| ∼ 1/∆ω. Then, the following expression for the phase
variance is obtained in the low-temperature limit:

∆φ2(t) ≈ 2∆ω0(1 + ν2)|t| − ν2

2Γp
.
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In this limit the autocorrelation function K(t) becomes expo-
nential (13b), and the power spectrum S(Ω) has a Lorentzian
shape (13a) with the full linewidth of generation given by the
expression

2∆ω = 2∆ω0(1 + ν2) = (1 + ν2)Γ+(p0)
kBT

E(p0)
. (22)

One can see, that the nonlinearity of the auto-oscillator fre-
quency ω(p) leads to the increase of the generation linewidth
by (1+ν2) times. The expression for the generation linewidth
of a ”nonlinear” auto-oscillator (22) was derived on the basis
of a nonlinear oscillator model and published for the first time
in [10].

One can show, that the condition ∆ω � Γp of applicability
of (22) can be rewritten as a condition for the temperature

kBT �
(

Γp

Γ+(p0)

)
E(p0)
1 + ν2

(23a)

or, using (9), as a condition for the relative power of thermal
fluctuations

∆p
p0
� 1√

1 + ν2
. (23b)

Thus, (22) represents a low-temperature limit of the gen-
eration linewidth of a ”nonlinear” auto-oscillator. The esti-
mations for the typical parameters of a spin-torque oscillator
(permalloy circular nano-pillar of the radius Rc = 50 nm
and thickness of the ”free” layer L = 5 nm, generation
frequency ωg/2π ' 30 GHz) show that the expression (22) is
quantitatively correct for the temperatures T ≤ 10 − 100 K,
depending on the supercriticality parameter ζ.

Another limiting case, which allows an easy analysis of
(21b), is the opposite limiting case of relatively long (com-
pared to the inverse linewidth 1/∆ω) correlation times of
the power fluctuations 1/Γp, or the case of relatively large
generation linewidths ∆ω�Γp. In this case the exponential
function in (21b) can be developed in a Taylor series to give:

∆φ2(t) ≈ 2∆ω0(|t|+ ν2Γpt
2) .

For sufficiently large frequency nonlinearities ν � 1 one can
drop the first (linear in |t|) term in the brackets, and retain
only the second term that is one quadratic in time. Then, the
phase variance ∆φ2(t) ∼ t2, and the power spectrum takes
the form

S(Ω) ∼ exp
[
− (ω(p0)− Ω)2

2∆ω2
∗

]
with the characteristic linewidth

∆ω∗ = |ν|
√

Γ+(p0)Γp

√
kBT

E(p0)
. (24)

In this limit the auto-oscillator linewidth is large ∆ω∗ �
Γp and proportional to the normalized nonlinear frequency
shift coefficient ν in the first power. Also, in contrast with the
low-temperature linewidth expression (22), giving the linear
dependence on temperature, the expression (24) for the auto-
oscillator linewidth is proportional to

√
T . It is interesting to

note, that formula for the auto-oscillator linewidth, which is
qualitatively similar to (24), was for the first time proposed

in [15] for the case of a spin-torque auto-oscillator (see (2) in
[15]). In the same paper the

√
T temperature dependence of

an STO linewidth was obtained as a result of direct numerical
simulations.

The expression (24) for the generation linewidth is valid in
the temperature range(

Γp

Γ+(p0)

)
E(p0)
ν2

� kBT �
(

Γp

Γ+(p0)

)
E(p0) (25a)

or, in terms of power fluctuations,

1
|ν|
� ∆p

p0
� 1 . (25b)

Thus, (24) is the asymptotic expression of the generation
linewidth of a strongly-nonlinear (|ν| � 1) auto-oscillator in
the intermediate temperature interval. For larger temperatures
or smaller oscillation powers p0 (i.e., in the near-threshold
region) expansion (19) is not valid anymore, and one has to
analyze the full equations (1) or (5), which can be done only
using numerical methods.

It is not clear, a priori, which of the above derived approxi-
mate expressions for the ”nonlinear” auto-oscillator linewidth
(22) or (24) is a better approximation for the description of
the experimentally measured linewidth magnitudes in strongly
nonlinear spin-torque oscillators. On one hand, many of the
experiments, where the STO linewidth was measured, were
done at a room temperature T ' 300K, which is higher
than the upper limit of applicability for the low-temperature
expression (22). On the other hand, in many cases the ex-
perimentally observed linewidths of spin-torque oscillators are
rather narrow ∆ω < ΓG, so that the conditions of applicability
of the other asymptotic expression (24) are, also, violated. As
it will be demonstrated below, the direct comparison of the
currently available experimental data with the above devel-
oped theory, in general, demonstrates that the low-temperature
expression (22) gives a much better account of the existing
experimental data. However, additional measurements of the
generation linewidth of STO performed in a wide range of
temperatures are necessary to clarify this important question
and to, possibly, see in the experiment the cross-over from the
linear to a squate root dependence on temperature, when the
temperature is increased.

D. Near-Threshold Region

The region near the generation threshold Γ+(0) ' Γ−(0)
(or, for a spin-torque oscillator, I ' Ith) is the most difficult
region for the theoretical analysis. In this region there are no
obvious linearization schemes by which (1) can be simplified,
and one needs to employ various numerical methods to evalu-
ate the auto-oscillator linewidth near the generation threshold.

The distortions of the power spectrum S(Ω) in the vicinity
of the generation threshold have been studied in [16] using
analytical and numerical methods based on a non-stationary
Fokker-Planck equation (5) for the probability distribution
function P(t, p, φ). The results of this analysis show that,
in the near-threshold region, the power spectrum S(Ω) does
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not have a simple Lorentzian form (13a), but rather can be
represented as a sum of partial Lorentzians

S(Ω) =
∑
j

2∆ωjpj
(Ω− ωj)2 + ∆ω2

j

.

For a ”linear” auto-oscillator (ω(p) = ω0 = const) the
central frequencies ωj for all the partial Lorentzians are equal
ωj = ω0, and the overall power spectrum S(Ω) remains
symmetric with respect to the central frequency ω0.

In contrast, for a ”nonlinear” auto-oscillator (ω(p) 6= const)
all the frequencies ωj are distinct and, in general, distributed
non-symmetrically around the zero-temperature frequency
ωg = ω(p0). As a result, the power spectrum S(Ω) becomes
asymmetric in the near-threshold region. Such asymmetry of
the power spectrum has been recently observed in experiments
with spin-torque oscillators based on metallic GMR nano-
pillar [7].

Another specific feature of the behavior of a nonlinear
auto-oscillator linewidth in the near-threshold region is an
apparent broadening of this linewidth. Like in the case of a
usual inhomogeneous linewidth broadening, the sum of sev-
eral partial Lorentzians with different central frequencies ωj
results in the power spectrum S(Ω) that has the overall width
that is larger, than the partial linewidths ∆ωj of individual
Lorentzians. This effect is illustrated by Fig. 5a, where the
linewidth ∆ω, obtained from a single-Lorentzian fit to the
power spectrum S(Ω), is shown as a function of the bias
current I for a a spin-torque oscillator. Good agreement is
found between the numerically and analytically calculated
linewidths far below and far above the generation threshold
in all cases, as indicated by the dashed lines representing the
linewidth values calculated using equations (15) and (22). In
general, the overall linewidth ∆ω decreases with the increasing
current, except in the region near the threshold, where a local
maximum of the linewidth can appear in the case of a strong
frequency nonlinearity |ν| � 1. Depending on the magnitude
of the nonlinear frequency shift |N |, this maximum can be
several times larger than the generation linewidth in both
below- and above-threshold regimes [16]. The experimental
measurements of the power spectra of current-induced mi-
crowave oscillations in STO, also, show the line narrowing
followed by line broadening near the generation threshold with
the increase of the bias current (see Fig. 3c in [7]).

Fig. 5b shows the variation of the generation frequency ω,
obtained from the single-Lorentzian fit to the power spectrum
S(Ω), with the bias current I [16]. This variation is relatively
slow below the generation threshold ω ≈ ω0 and exhibits
a fast quasi-linear change with current above the generation
threshold due to the nonlinear frequency shift, in agreement
with (I.30).

E. Comparison with Experiments

The above presented theory of the generation linewidth of
nonlinear auto-oscillators successfully explains a number of
qualitative features, experimentally observed in the linewidth
measurements on spin-torque oscillators. First of all, the
inverse dependence of the generation linewidth (22) on the

Bias current I/Ith
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Fig. 5. Generation linewidth ∆ω (panel (a)) and frequency shift δω = ω−ω0

(panel (b)) as a function of the bias current I obtained from single-Lorentzian
fits to spectra computed for different values of the frequency nonlinearity N =
N/ΓG (from [16]). Noise power η = 10−3, nonlinear damping coefficient
Q = 2. Dashed lines in (a) show the below-threshold (15) and above-threshold
(22) linewidth asymptotics. Used values of the parameters are typical for in-
plane magnetized spin-torque oscillators (note that the nonlinear frequency
shift N is negative).

energy of oscillations E(p0) explains the general linewidth
narrowing with the increase in the bias current and oscillation
amplitude observed in, e.g., Fig. 4 in [17]. Note, also, that the
energy E(p0) is proportional to the effective volume Veff of the
auto-oscillator, which is much larger for a spin-torque auto-
oscillator, based on a magnetic nano-contact, than for a similar
device based on a nano-pillar. Thus, the linewidth expression
(22) provides a natural explanation for a well-known experi-
mental fact (see [18]–[20]) that the auto-oscillation linewidths
associated with devices based on magnetic nano-pillars are, in
general, several times broader that those in the devices based
on magnetic nano-contacts.

In Fig. 6 we show the comparison of the generation
linewidth calculated using two asymptotic expressions (22)
and (24) with the results of experimental measurements of
the temperature dependence of the linewidth of a spin-torque
oscillator performed on the nano-pillar devices #1 (Fig. 6a)
and #2 (Fig. 6b) in [15] (see Fig. 2 in [15]). The geometrical
parameters of the nano-pillar devices were taken from [15] and
it was assumed that the excited magnetization oscillation mode
is pinned at the pillar lateral boundaries (see [21] for details),
the Gilbert damping parameter αG = 0.01, the nonlinear
damping parameter Q = 3, and the polarization efficiency
ε = 0.4 were assumed to be the same for both devices [10].
As it is clear from Fig. 6, the simple analytical expression (22)
obtained in the low-temperature limit gives a reasonably good
estimate of the observed linewidths at different temperatures
for both nano-pillar devices with the same parameters. At the
same time, the second asymptotic expression (24) obtained
in the relatively high-temperature limit significantly overesti-
mates the generation linewidth. Assuming that the parameters
of the two devices are slightly different (which is possible due
to different nano-patterning and different thicknesses of the
”free” magnetic layer), one can obtain much better quantitative
agreement with the experiment [15] using the low-temperature
expression (22). Although it is difficult to determine from
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Fig. 6. Generation linewidth 2∆ω of a spin-torque oscillator calculated
from the approximate expressions (22) (solid lines) and (24) (dashed lines) in
comparison with the temperature dependence of the linewidth in a nanopillar
device #1 (a) and device #2 (b) measured in [15] (black dots). Panel (a) shows
the linewidth measured at the second harmonic of the signal 2∆ω2 = 8∆ω.

the experimental data presented in Fig. 6 what is the real
temperature dependence of the generation linewidth, it is clear
that the low-temperature asymptotic expression (22) gives a
much better estimate of the generation linewidth magnitude.

In Fig. 7 we compared the theoretical (22) and experimental
[17] (see Fig. 6 in [17]) dependences of the full generation
linewidth 2∆ω on the out-of-plane magnetization angle θ0 of
nano-contact spin-torque oscillator. All the parameters of the
nano-contact device Fig. 7 were taken from [17], while the
current I = 9 mA and magnetic field H0 = 9 kOe correspond
to the center of the experimentally studied region, and the
nonlinearity parameter of positive damping was again chosen
to be equal to Q = 3 [10]. It is clear from Fig. 7, that the
linewidth dependence on the bias field orientation calculated
using the low-temperature asymptotic expression (22) is in
good quantitative agreement with the experimental results
from [17]. In contrast, the classical result for a ”linear” auto-
oscillator (18) (see dashed line in Fig. 7, which shows classical
result (18), multiplied by 10) predicts a much narrower lines
and a monotonous decrease of the linewidth as a function
of the out-of-plane magnetic field angle θ0. The ”nonlinear”
result (22) gives a reasonable qualitative and quantitative
description of the experimentally observed behavior of the
auto-oscillator linewidth, and, in particular, it predicts the
linewidth minimum around θ0 ≈ 80 o, which is clearly seen in
the experimental data. This linewidth minimum occurs at the
”linear” magnetization angle θ0, lin, for which the nonlinear
frequency shift coefficient N vanishes (see Fig. I.6a), and,
therefore, at this magnetization angle the spin-torque oscillator
behaves as a classical ”linear” oscillator with the generation
linewidth determined by (18).

For an STO based on an anisotropic nano-pillar one may,
also, expect a non-trivial dependence of the full generation
linewidth 2∆ω on the in-plane magnetization angle φ0, since
in this case the nonlinear frequency shift coefficient N sig-
nificantly varies with φ0 (see Fig. I.6b). Recent experiments
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Fig. 7. Generation linewidth 2∆ω of a spin-torque auto-oscillator calculated
from (22) (solid line) in comparison with the angular dependence of the nano-
contact STO linewidth measured at a room temperature in [17] (black dots)
(from [10]). The dashed line represents the classical result for a ”linear” auto-
oscillator linewidth calculated from (18) and multiplied by 10 .

[22] performed using a spin-torque oscillator based on a nano-
pillar geometry where the ”free” layer was magnetized by the
bias magnetic field oriented in the ”free” layer plane, indeed,
demonstrated strong variation of the oscillation linewidth with
the variation of the in-plane magnetization angle φ0. This
behavior of the generation linewidth finds a natural explanation
in the framework of the asymptotic linewidth expression (22).
Fig. 8 shows the comparison of the experimental data from
[22] with the angular dependence of the linewidth 2∆ω
calculated from the asymptotic equation (22) using the general
expression for the nonlinear frequency shift coefficient in an
anysotropic magnetic film and taking all the other parameters
of the spin-torque oscillators from [22]. It is clear from Fig. 8,
that the linewidth corresponding to the magnetization along
the hard in-plane axis (φ0 = 90 o) of the nano-pillar ”free”
layer is much smaller than the linewidth in the case of the
magnetization along the easy axis (φ0 = 0). It is, also, clear,
that the linewidth expression (22) gives a good qualitative and
a reasonable quantitative description of the experimental data
for both nano-oscillator devices used in the experiments [22].

We would, also, like to note that, similar to the case of an
spin-torque oscillator with an out-of-plane magnetized ”free”
layer, in the case of an STO based on an anisotropic in-
plane magnetized nano-pillar it is possible to choose the
direction and magnitude of the bias magnetic field in such a
way that the nonlinear frequency shift coefficient N vanishes
(see Fig. I.6b). Under these conditions the linewidth of the
anisotropic STO will have a minimum possible value, corre-
sponding to the case of a ”linear” auto-oscillator (18).
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